3.4.16 \(\int \frac {x^2}{a^2+2 a b x^2+b^2 x^4} \, dx\)

Optimal. Leaf size=45 \[ \frac {\tan ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )}{2 \sqrt {a} b^{3/2}}-\frac {x}{2 b \left (a+b x^2\right )} \]

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 45, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {28, 288, 205} \begin {gather*} \frac {\tan ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )}{2 \sqrt {a} b^{3/2}}-\frac {x}{2 b \left (a+b x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2/(a^2 + 2*a*b*x^2 + b^2*x^4),x]

[Out]

-x/(2*b*(a + b*x^2)) + ArcTan[(Sqrt[b]*x)/Sqrt[a]]/(2*Sqrt[a]*b^(3/2))

Rule 28

Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/c^p, Int[u*(b/2 + c*x^n)^(2*
p), x], x] /; FreeQ[{a, b, c, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rubi steps

\begin {align*} \int \frac {x^2}{a^2+2 a b x^2+b^2 x^4} \, dx &=b^2 \int \frac {x^2}{\left (a b+b^2 x^2\right )^2} \, dx\\ &=-\frac {x}{2 b \left (a+b x^2\right )}+\frac {1}{2} \int \frac {1}{a b+b^2 x^2} \, dx\\ &=-\frac {x}{2 b \left (a+b x^2\right )}+\frac {\tan ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )}{2 \sqrt {a} b^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 45, normalized size = 1.00 \begin {gather*} \frac {\tan ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )}{2 \sqrt {a} b^{3/2}}-\frac {x}{2 b \left (a+b x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2/(a^2 + 2*a*b*x^2 + b^2*x^4),x]

[Out]

-1/2*x/(b*(a + b*x^2)) + ArcTan[(Sqrt[b]*x)/Sqrt[a]]/(2*Sqrt[a]*b^(3/2))

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^2}{a^2+2 a b x^2+b^2 x^4} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[x^2/(a^2 + 2*a*b*x^2 + b^2*x^4),x]

[Out]

IntegrateAlgebraic[x^2/(a^2 + 2*a*b*x^2 + b^2*x^4), x]

________________________________________________________________________________________

fricas [A]  time = 0.82, size = 120, normalized size = 2.67 \begin {gather*} \left [-\frac {2 \, a b x + {\left (b x^{2} + a\right )} \sqrt {-a b} \log \left (\frac {b x^{2} - 2 \, \sqrt {-a b} x - a}{b x^{2} + a}\right )}{4 \, {\left (a b^{3} x^{2} + a^{2} b^{2}\right )}}, -\frac {a b x - {\left (b x^{2} + a\right )} \sqrt {a b} \arctan \left (\frac {\sqrt {a b} x}{a}\right )}{2 \, {\left (a b^{3} x^{2} + a^{2} b^{2}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b^2*x^4+2*a*b*x^2+a^2),x, algorithm="fricas")

[Out]

[-1/4*(2*a*b*x + (b*x^2 + a)*sqrt(-a*b)*log((b*x^2 - 2*sqrt(-a*b)*x - a)/(b*x^2 + a)))/(a*b^3*x^2 + a^2*b^2),
-1/2*(a*b*x - (b*x^2 + a)*sqrt(a*b)*arctan(sqrt(a*b)*x/a))/(a*b^3*x^2 + a^2*b^2)]

________________________________________________________________________________________

giac [A]  time = 0.20, size = 35, normalized size = 0.78 \begin {gather*} \frac {\arctan \left (\frac {b x}{\sqrt {a b}}\right )}{2 \, \sqrt {a b} b} - \frac {x}{2 \, {\left (b x^{2} + a\right )} b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b^2*x^4+2*a*b*x^2+a^2),x, algorithm="giac")

[Out]

1/2*arctan(b*x/sqrt(a*b))/(sqrt(a*b)*b) - 1/2*x/((b*x^2 + a)*b)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 36, normalized size = 0.80 \begin {gather*} -\frac {x}{2 \left (b \,x^{2}+a \right ) b}+\frac {\arctan \left (\frac {b x}{\sqrt {a b}}\right )}{2 \sqrt {a b}\, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(b^2*x^4+2*a*b*x^2+a^2),x)

[Out]

-1/2*x/b/(b*x^2+a)+1/2/b/(a*b)^(1/2)*arctan(1/(a*b)^(1/2)*b*x)

________________________________________________________________________________________

maxima [A]  time = 3.00, size = 36, normalized size = 0.80 \begin {gather*} -\frac {x}{2 \, {\left (b^{2} x^{2} + a b\right )}} + \frac {\arctan \left (\frac {b x}{\sqrt {a b}}\right )}{2 \, \sqrt {a b} b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b^2*x^4+2*a*b*x^2+a^2),x, algorithm="maxima")

[Out]

-1/2*x/(b^2*x^2 + a*b) + 1/2*arctan(b*x/sqrt(a*b))/(sqrt(a*b)*b)

________________________________________________________________________________________

mupad [B]  time = 0.05, size = 33, normalized size = 0.73 \begin {gather*} \frac {\mathrm {atan}\left (\frac {\sqrt {b}\,x}{\sqrt {a}}\right )}{2\,\sqrt {a}\,b^{3/2}}-\frac {x}{2\,b\,\left (b\,x^2+a\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(a^2 + b^2*x^4 + 2*a*b*x^2),x)

[Out]

atan((b^(1/2)*x)/a^(1/2))/(2*a^(1/2)*b^(3/2)) - x/(2*b*(a + b*x^2))

________________________________________________________________________________________

sympy [B]  time = 0.22, size = 78, normalized size = 1.73 \begin {gather*} - \frac {x}{2 a b + 2 b^{2} x^{2}} - \frac {\sqrt {- \frac {1}{a b^{3}}} \log {\left (- a b \sqrt {- \frac {1}{a b^{3}}} + x \right )}}{4} + \frac {\sqrt {- \frac {1}{a b^{3}}} \log {\left (a b \sqrt {- \frac {1}{a b^{3}}} + x \right )}}{4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(b**2*x**4+2*a*b*x**2+a**2),x)

[Out]

-x/(2*a*b + 2*b**2*x**2) - sqrt(-1/(a*b**3))*log(-a*b*sqrt(-1/(a*b**3)) + x)/4 + sqrt(-1/(a*b**3))*log(a*b*sqr
t(-1/(a*b**3)) + x)/4

________________________________________________________________________________________